ECP

I Introduction to MPI-1/O

ATPESC 2022

Rob Latham
Math and Computer Science Division

Argonne National Laboratory

August 5, 2022

. FTR U.S: DEPARTMENT OF Office of N VS-E’Q
exascaleprOJeCtlorg -"‘ ' i ENERGY SCIence Na!.r'onalNuc&SecurityAdmr’nis:;g

Plan of attack

ABottom-up tour of 1/O interfaces
I POSIX routines called by MPI-10 implementations
I Parallel-NetCDF routines build on top of MPI-IO

A Simple toy programs
I Refining example several times throughout session
I You can apply these lessons to your own code

AHeads up: going to do things the "hard way",
then show "easier way"

ADemonstrating some tools for understanding
what 6s goi ng on

materials: https://github.com/radix-io/hands-on

- ""'4, U.S. DEPARTMENT OF

| @ ENERGY Science _\(_

Office of

PNETCDF HDF5

MPI-IO

POSIX

\
EXASCAHLE
\) —, COMPUTING

PROJECT

https://github.com/radix-io/hands-on

Hands on materials

ACode for this &
I Simple array I/O

Aé and other secti gtassitmvail abl e
I Game of Life I/O
I Sparse Matrix I/O
i Darshan
i HDF5
i 10OR recipes
I https://github.com/radix-io/hands-on

A Work through examples when you

styl eé

AR, U-S. DEPARTMENT OF Office of

EN ERGY Science

materials: https://github.com/radix-io/hands-on

on our

can.

o

\
EXASCAHLE
\) —) COMPUTING

PROJECT

\

https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on

Operating on Arrays

AArrays show up in many scientific
applications

I Matrix operations
I Particle maps

I Regions of space
I Time series

I Images

AProbably your real application more
complicated but an array or two (or more) Is

I n there somewher e, | 60d wager
materials: https://github.com/radix-io/hands-on ﬁ EﬁPAERTMREEFY gfﬁce of _\(\/ —.\\)|_J EXETS
Clence PROJECT

https://github.com/radix-io/hands-on

These regions are then
distributed to cores
(columns) on nodes
(grey boxes) faor
computation.

Decomposition

Graphic from J. Tannahill, LLNL

Typical simulations divide
up the region being
simulated into chunks,
then group those chunks
into similar amounts of
work.

e

- AN /

.

AN

materials: https://github.com/radix-io/hands-on

[

£3>, U.S. DEPARTMENT OF

&y = ERGY Science

N
.

(LT T T T T
BN [[[T [T TTTTT]
LT T T T T T 11T T s
I e [[T 1]

~

S

Office of

When speed of
writing is the
priority, blobs of
data are written
from each node
into individual
files that must
then be post-
processed for
analysis.

To prepare data
for analysis, a
code can write in
a canonical view
by processing
the data while it
IS In memory,
resulting in a
better organized
dataset.

—
\\ EXASCAHLE

) —) COMPUTING
PROJECT

https://github.com/radix-io/hands-on

Scientific I/0O constraints

A Defensive 1/O:
i Guard against node failures or program errors with checkpointing
i Application saves its own state
I With a bit of extra effort, can be a portable, canonical representation
i Ideally Independent of number of processes

A Restarting:
I Canonical representation aids restarting with a different number of processes

A Data analysis
T Who will consume this data?

A Machine Learning
i Anwhy 1 s my [random small read] workload so sl o

—_—

ENT O . -_—
y U.S. DEPARTMENT OF Office of \\ EXASCALE

ENERGY Science _\()_) PRODECT

PROJECT

materials: https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Defining a Checkpoint

ANeed enough to restart

I Header information
A Size of problem (e.g. matrix dimensions)
A Description of environment (e.g. input parameters)

I Program state
A Should represent the global (canonical) view of the data

Aldeally stored in a convenient container
i Singl e At hi nkgywal stofei..)l] e, obj ect,

AlIf all processes checkpoint at once, naturally a parallel, collective operation

o

, U.S. DEPARTMENT OF Office of

(R \
@ ENERGY sice E(C)P FE7S

materials: https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

HANDS-ON 1: simple data descriptions (no I/O yet)

A Consider an application that operates on a 2-d array of integers.

1. Write code declaring a 2-d array of integers

A Probably want to allocate on heap, not stack

A Later steps will be easier if you make it a single allocation
2. Define a data structure describing the experiment

A E.g. C struct with row, column, iteration

A Use whatever |l anguage you | ikeé

i €& but we can be most Rebpdystlhoinf Aysod utud @ nG o()c . f
A Sourtheta -8Betup-envshdo t o | oad necessary modul es
A Could run this first example on | aptop if

—_—

PR, U-S- DEPARTMENT OF Office of \\ EXASCALE

ENERGY science _\(] ==t

materials: https://github.com/radix-io/hands-on

PROJECT

https://github.com/radix-io/hands-on

HANDS-ON 1 solutions

C struct holding metadata

typedef struct {
Nt row;
int col;
int iter ;

} science;

Do this: index into a single big allocation

int *array;
array = malloc(XDIM*YDIM*

Donot do t hi s N al |

[* not MPI - friendly: describing this memory region will require
* a more complicated data type description */
Int **annoying;

annoying = malloc (YDIM* sizeof (*array));
for (int 1=0; i<YDIM; i++)
annoying[i]= malloc (XDIM* sizeof (*array));

materials: https://github.com/radix-io/hands-on

ocat

sizeof (*array));

ons

Good: X*Y elements in contiguous allocation

wi | |
€ é

Less good: multiple memory regions

U.S. DEPARTMENT OF Ofﬁce of

r';;\\
ENERGY science _\(\ \)I_J CerPLT
C

https://github.com/radix-io/hands-on

POSIX I/O

APOSIX is the IEEE Portable Operating System Interface for Computing
Environments

AR POSI X defines a standard way for an
services from the operating systemo

I Mechanism almost all serial applications use to perform I/O

APOSIX was created when a single computer owned its own file system

o

ERY, U.S. DEPARTMENT OF Office of

> A \
@ ENERGY sice E(C)P FE7S

materials: https://github.com/radix-io/hands-on

10

https://github.com/radix-io/hands-on

Deficiencies In serial interfaces
POSIX:

fd =

opesofefle 6, O_WRONLY| O CREAT,

S_IRUSR|S_IWUSR);
ret = write(fd, w_data, nbytes);

ret =

Iseek (fd , 0, SEEK_SET);

ret = read(fd, r_data , nbytes);
ret = close(fd);

FORTRAN:

OPEN(10, Bomé fles @0,

STATUS=0repl aceo,

ACCESS=0direct 6,
WRITE(10, REC=2) 15324
CLOSE(10);

&
&
RECL=16) ;

ATypical (serial) I/O calls seen in applications

ANo notion of other processors

APrimitive (if any) data description methods

ATuning limited to open flags

ANo mechanism for data portability

Fortran not even portable between compilers

materials: https://github.com/radix-io/hands-on

11

!\.!i?*a U.S. DEPARTMENT OF OffICe Of

49 ENERGY science

o

\
EXASCAHLE
\) —) COMPUTING

PROJECT

https://github.com/radix-io/hands-on

HANDS-ON 2: simple I/O

AWe havenot t adCkoelD libmabies, bt weMtBnl still checkpoint.

Serial I/O, not parallel

Al mp | e mete tatad

materials: https://github.com/radix-io/hands-on

12

Wil create file and fill in data

Prototype:
Aint write_data (char *filename)
Use system calls (open(), write(), close()) , nstwdibo fic @ fopes (), fwrite (),

fclose ()) : will map more closely to MPI-IO later
How will you know it worked?

We are going to repeatedly revise write_data () (and later read_data ()) with each
exercise

o

AP R, U-S- DEPARTMENT OF Office of

@ENERGY socne E(C)P 5255

https://github.com/radix-io/hands-on

RUNNING

ASubmit to the 6 AT P E @€Csparidl guduegruascert) (t het a)

Al 6ve provi déckta.&hdbandendsh stelliseripti t

I gsub Zg ATPESC2022 submit- theta.sh <program> [filename]
Alf you donét gitesdiled] fuisleedname], then 0

A Which file system to use?
I Tried to make scripts do right thing by default
i Pl ease don 6 t-mounded homddirectryy S
I Given scripts should already point you to the right parallel directory
A Theta: /grand/ATPESC2022/ usr /$USER

A Make a directory for your data
I Theta: mkdir Zp /grand/ATPESC2022/ usr /SUSER/

A Set sensible striping:
I Ifs setstripe Zstripe -count -1 /grand/ATPESC2022/ usr /$USER/

—_—

PSENT O 8 o —
» U.S. DEPARTMENT OF OffICe Of \\ EXASCALE

ENERGY science _\(= s

materials: https://github.com/radix-io/hands-on

PROJECT

13

https://github.com/radix-io/hands-on

Solution fragments:

int write_data (char *filename)

{
science data = {
.row = YDIM,
.col = XDIM,
Jiter =1
I3
int *array;
int fd;
int ret=0;
array = buffer_create (0, XDIM, YDIM);
fd = open(flename, O_CREAT|O_WRONLY,
S IRUSR|S IWUSR);
ret = write(fd , &data, sizeof (data));
ret = write(fd , array, XDIM*YDIM* sizeof (int));
ret = close(fd);
return ret;
}

materials: https://github.com/radix-io/hands-on

14

Reading a binary file: Acat o wonot
Could write a ¢ program to read. Several

uti lities availabl e. I I
only did an fnocypal dumpo)
argument can select (d)ecimal

% od - td testfile

0000000 1 5 1 0
0000020 1 2 3 4
0000040

U.S. DEPARTMENT OF ’;\
e Office of \\ EXASCALE

@ ENERGY science _\(= e

PROJECT

https://github.com/radix-io/hands-on

HANDS-ON 3: send-to-master

ONORONONORO
AParallel program, but serial /0O

1. Write_data () should take an MPI File
Communicator

2. Call MPIL_Init() and MPI_Finalize()
3. Use MPI_Gather to collect all data onto rank O:

AOnly rank 0 does I/O; writes header and all
array information

AWhat 6s good-toanmacsuter?endVhat 0s
bad?

materials: https://qgithub.com/radix-io/hands-on ﬁ = ks anny | SilicE of

=
ENERGY Science _\(__ = R

15

https://github.com/radix-io/hands-on

16

Solution fragments: MPI_Gather

MPI_Comm_rank(comm, &rank);
MPI_Comm_size (comm, & nprocs);

[* every process creates its own buffer */

array = buffer_create (rank, XDIM, YDIM);

/* and then sends it to rank O */
int *buffer =
malloc(XDIM*YDIM* nprocs *sizeof (int));

MPI1_CHECKMPI_Gather (
[* sender (buffer,count,type) tuple */
array, XDIM*YDIM, MPI_INT,
[* receiver tuple */
buffer, XDIM*YDIM, MPI_INT,
[* who gathers and across which context */
0, comm));

materials: https://github.com/radix-io/hands-on

: collect all data on rank O

o

AR, U-S. DEPARTMENT OF Office of

ENERGY cice El

)

) EXASCAHLE
COMPUTING
PROJECT

https://github.com/radix-io/hands-on

17

Solution fragments: writing from rank O

it (rank == 0) {
[* looks like serial with more data */
e

[* writing (logically) global array, not
just our local piece of it */

data.row = YDIM* nprocs ;
data.col = XDIM:;
data.iter =1;

ret = write(fd , &data, sizeof (data));

ret = write(fd , buffe
XDIM*YDIM¢ nprocs *sizeof (int)

ret = close(fd);
return ret;

\o“":“'\"”’«'ax,, U.S. DEPARTMENT OF Offlce Of

ENERGY Science

materials: https://github.com/radix-io/hands-on

o

LS

)

) EXASCAHLE
COMPUTING
PROJECT

https://github.com/radix-io/hands-on

Other questions:

A Lots of machines (your laptop; Theta) represent integers as 32 bit little
endian. What if you went back in time and ran this code on BlueGene

I Summit and ascent are powerpc64le

AWe wrote row-wise. What if you wanted to write a column of data?
AWhat impact would a header have on data layout? Are there other options?

SR>, U-S. DEPARTMENT OF Office of

L 7 \
AN e e e e s VIIILEC O e~ ™\ ™ EXASCALE
el \: . f— \) I—) CCCCCCCCC
A\ Science \ EEEEEEE

materials: https://github.com/radix-io/hands-on

18

https://github.com/radix-io/hands-on

HANDS-ON 4: using Darshan

1. Find the darshan log for the last exercise
2. View the raw couanptaerrsserwi t h Adar shan

3. Generate a report
I You might have to transfer PDF locally to view

4. Find the darshan log for the exercise #2
i Hint: yowhym®not !
i éor can you?

AHint: https://www.alcf.anl.gov/support-center/theta/darshan

o

"""”!{"\"-:x,_¢ U.S. DEPARTMENT OF OfflCe Of

R \
' ENERGY Science _\(\) = e

materials: https://github.com/radix-io/hands-on

19

https://github.com/radix-io/hands-on
https://www.alcf.anl.gov/support-center/theta/darshan-theta

Parallel 1/O and MPI

A The stdio checkpoint routine works but is not parallel
I One process is responsible for all 1/0
A No concurrency in 1/O; single link to storage

A Memory pressure
i Woul dndét want to use this approach for real

A How can we get the full benefit of a parallel file system?
I We first look at how parallel I/0O works in MPI
I We then implement a fully parallel checkpoint routine

AMPI is a good setting for parallel 1/0

I Writing is like sending and reading is like receiving

I Any parallel I/O system will need:
A collective operations
A user-defined datatypes to describe both memory and file layout
A communicators to separate application-level message passing from I/O-related message passing
A non-blocking operations

i l.e., lots of MPI-like machinery

U.S. DEPARTMENT OF])
7 A —— Office of \\ EXASCALE

ENERGY science _\(] ==t

PROJECT

materials: https://github.com/radix-io/hands-on

20

https://github.com/radix-io/hands-on

Simple MPI-IO

A Collective open: all processes in communicator
AFile-side data layout with file views
AMemory-side data layout with MPI datatype passed to write

MPI_File_open (COMM, name, mode, MPI_File_open (COMM, name, mode,
info, fh); info, th);
MPI_File_set_view (fh, disp , etype , MPI_File_set view (fh, disp , etype ,
filetype , datarep , info); filetype , datarep , info);
MPI1_File_write_all (fh, buf , count, MPI1_File_write_all (fh, buf , count,
datatype, status); datatype, status);
disp

o

\“""\"!""-:,‘ U.S. DEPARTMENT OF Offlce Of

W ENERGY | science _\(\ \) — soie
“ o

materials: https://github.com/radix-io/hands-on

21

https://github.com/radix-io/hands-on

Collective I/O

AA critical optimization in parallel /O

AAIl processes (in the communicator) must call the collective
/O function

AAl |l ows communication of fibig picturebo
I Framework for 1/O transformations/optimizations at the MPI-IO layer
I e.g., two-phase I/O

4

\4

—_— =

— Large collective
access

Small individual
requests

o

ERY, U.S. DEPARTMENT OF Office of

> A \
@ ENERGY sice E(C)P FE7S

materials: https://github.com/radix-io/hands-on

22

https://github.com/radix-io/hands-on

Collective MPI I/O Functions

ANot going to go through the MPI-IO API in excruciating detail
I Happy to discuss in slack, chat, email

AMPI_File write_at_all, etc.

i _all indicates that all processes in the group specified by the communicator passed to
MPI_File _open will call this function

I _at indicates that the position in the file is specified as part of the call; this provides thread-
safety and cl earer code than using a separat
AEach process specifies only its own access information
I the argument list is the same as for the non-collective functions

I OK to participate with zero data
A All processes must call a collective
A Process providing zero data might participate behind the scenes anyway

o

, U.S. DEPARTMENT OF Office of \ EXASCALE

ENERGY Science _\(\) - FROCECT

materials: https://github.com/radix-io/hands-on

23

https://github.com/radix-io/hands-on

HANDS-ON 5: writing with MPI-10

ALet 6s take fil/ O from mastero example and make

A Use MPI_File_open instead of open

A Only one process needs to write header

i Independent MPI_File write
i Could combine, but header I/O small and checkpoint (typically) vastly larger

AEvery process sets a fAfile viewo
i Needtoskipoverheaderif il e view has an fAoffseto fi
i The Afile viewd here Iis not complicated:
bytes:
A MPI_File_set view (fh, sizeof (header), MPI_INT, MPL_INT,
‘native” —, info));

A Each process writes one slice/row of array

i MPI_File_write_at_all
i Of fset: Ar ankrosiéofM* Y O p #te in file viewd
I fAlufer, count , da tvaludey, XEN*ODIM, MR IING). (

MEN ”/,_' ’.Q
% U.S. DEPARTMENT OF Office of \\ EXASCALE

| @ / ENERGY Science _\(_ L=

materials: https://github.com/radix-io/hands-on

PROJECT

24

https://github.com/radix-io/hands-on

Solution fragments for Hands-On 5

Header I/O from rank O:
if (rank ==0){
MPI_CHECKMPI _File write (fh,
&header, sizeof (header), MPI_BYTE,
MPI_STATUS IGNORE));

Collective I/O from all ranks

MPI_File_write_at_all (fh , rank*XDIM*YDIM,
values, XDIM*YDIM, MPI1_INT,
MPI_STATUS IGNORE));

)\'i'i;,_¢ U.S. DEPARTMENT OF Oﬁflce Of

49 ENERGY science

materials: https://github.com/radix-io/hands-on

25

o

)

) EXASCAHLE
COMPUTING
PROJECT

https://github.com/radix-io/hands-on

Hands-on 5 continued: Darshan

AA | ot | i k e Datshhan l et 6s use
I FindDarshanl og fil e, but dondét generate report ri

AWhat do you think the report will say?

AOK, now generate the report. Were you surprised?
I Counts of POSIX calls vs MPI-IO calls
I Sizes of POSIX calls vs sizes of MPI-10 calls

o

U.S. DEPARTMENT OF Office of

\
ENERGY scene E(CP #3555

materials: https://github.com/radix-io/hands-on

26

ENT Op
SRERLOF
=7 Y
S s
S \&
e !
1"\ W 5
2\ /&
N &
RN
CATES O

https://github.com/radix-io/hands-on

Managing Concurrent Access

Files are treated like global shared memory regions. Locks are used to

manage concurrent access:

A Files are broken up into lock units
I Unit boundaries are dictated by the storage system, regardless of access pattern

A Clients obtain locks on units that they will access before 1/O occurs
A Enables caching on clients as well (as long as client has a lock, it knows its

cached data is valid)

A Locks are reclaimed from clients when others desire access

If an access touches any data in a

Offset in File

lock unit, the lock for that region | ‘

must be obtained before access
OCcCurs.

materials: https://github.com/radix-io/hands-on

27

}

Lock
Boundary

_____ l_ 1
Lock File Access
Unit

o

U.S. DEPARTMENT OF Office of \ EXASCALE

ENERGY Science _\(\) — PRODECT

https://github.com/radix-io/hands-on

28

Implications of Locking in Concurrent Access

2D View of Data

The left diagram shows a row-
block distribution of data for —
three processes. On the right
we see how these accesses

map onto locking units in the

file.

In this example a header
(black) has been prepended to
the data. If the header is not
aligned with lock boundaries,
false sharing will occur.

In this example, processes
exhibit a block-block access —
pattern (e.g.accessing a
subarray). This results in many
interleaved accesses in the file.

11|

materials: https://github.com/radix-io/hands-on

Offset in File

= T N

When accesses are to large contiguous
regions, and aligned with lock boundaries,
locking overhead is minimal.

Y

These two regions exhibit false sharing:

no bytes are accessed by both processes, but
because each block is accessed by more than
one process, there is contention for locks.

When a block distribution is used, sub-rows
cause a higher degree of false sharing,
especially if data is not aligned with lock
boundaries.

O""'\”""-:,‘ U.S. DEPARTMENT OF Offlce Of

ENERGY Science

—
\) EXASCALE
) COMPUTING

PROJECT

https://github.com/radix-io/hands-on

/O Transformations

Software between the application and the file system performs
transformations, primarily to improve performance.

A Goals of transformations: ProcessO | | Process1 | | Process2
i Reduce number of operations to PFS ’ % %
N e
(avoiding latency) NN A/

I Avoid lock contention
(increasing level of concurrency)
I Hide number of clients
(more on this later)

AWith Atransparento t r'Waen ve thik abentd/@ triansfanmstions,
data ends up in the same locations we consider the mapping of data between
in the file as it would have been application processes and locations in file.

normally
I l.e., the file system is still aware of the

actual data organization o < beARTIENT OF . —
materials: https://github.com/radix-io/hands-on Office of

i EN ERGY Science _\(\) = coveomie

29

https://github.com/radix-io/hands-on

/O Transformations

Software between the application and the file system performs
transformations, primarily to improve performance.

A We will tour through a few examples ProcessO | | Process1 | | Process2
of datc_':l tran.sformations In the o \\\¥ % % =
following slides

A The important thing to remember is
that software already exists to do
these things for you in HDF5,
PnetCDF, ADIOS, and MPI-IO When we think about I/O transformations,

A If you find yourself replicating these we consider the mapping of data between
optimizations by hand, look around application processes and locations in file.
to see if you can find an off-the-shelf
solution

materials: https://github.com/radix-io/hands-on £ =aiEm ey | Office of -.\\l_) EEEEEEEE

@ENERGY e E(CP =2

EEEEEEE

30

https://github.com/radix-io/hands-on

Reducing Number of Operations

Because most operations go over multiple networks, 1/0 to a PFS incurs more
latency than with a local FS. Data sieving Is a technique to address I/O latency by
combining operations:

A When reading, application process reads a large region holding all needed data and
pulls out what is needed

A When writing, three steps required (below)
A Somewhat counter-intuitive: do extra I/O to avoid contention

Application Process
Memory 7 ‘
v
Buffer » ‘
2 B e B O || [-
%;I T %fiié 7 &%I%
File [[[T [[[T [[] | L] | I B |

Step 3: Entire region is written back to

Step 2: Elements to be written to file _ _ / _
storage with a single write operation.

are replaced in intermediate buffer,

Step 1: Data in region to be modified
are read into intermediate buffer (1
read).
materials: https://github.com/radix-io/hands-on

o

SSR, U.S. DEPARTMENT OF Office of \ EXASCALE

ENERGY Science _\(\) — FROOECT

31

https://github.com/radix-io/hands-on

Time (s)

32

Data Sieving in Practice

Not always a win, particularly for writing:

A

550

500 |
450 |
400 |
350 |
300 |
250 |
200 |
150 |
100 |

Enabling data sieving actually made writes slower: why?

A Locking to prevent false sharing (not needed for reads)

A Multiple processes per node writing simultaneously

A Internal ROMIO buffer too small, resulting in write amplification

Noncontiguous Writes with IOR

No Data Sieving sje
Data Sieving Enabled g

-

1 10 100 1000 10000

Pieces

materials: https://github.com/radix-io/hands-on

MPI-IO writes
MPI-IO Reads
Posix Writes

Posix Reads
MPI-10 bytes written
MPI-1O bytes read
Posix bytes read
Posix bytes written

\\\“":“'\"9’«'51,, U.S. DEPARTMENT OF

JENERGY

192

0

192000

0
1920000000
0

0
1920000000

Office of

_____________|Naive __|DataSieving

192

0

192000
192015
1920000000

0
100039006128
100564552704

o

PROJECT

Science

N\ 2
o

https://github.com/radix-io/hands-on

Avoiding Lock Contention

We can reorder data among processes to avoid lock contention. Two-
phase 1/O splits I/O into a data reorganization phase and an interaction with the
storage system (two-phase write depicted):

AData exchanged between processes to match file layout
A0t phase determines exchange schedule (not shown)

Process 0 Process | Process 2 Process 0 Process | ' Process 2
Memory | I e %—? H B B H B B
Buffer ... I '—- I
L
Server 0 Server | Server 2 Server| | 7
File ([1] (113 [T 1T [i B
Phase 1: Data are exchanged between processes based Phase 2: Data are written to file (storage servers) with
on organization of data in file. large writes, no contention.

o

) U.S. DEPARTMENT OF OffICe Of

W ENERGY science _\(\) — e

materials: https://github.com/radix-io/hands-on

33

https://github.com/radix-io/hands-on

" For more information, see W K. Li
TWO-Phase I/O AJgorItth _Adapting File Domain Partitioning Methods for Collective
(or, You dondot want to do t hi s/ oyBaterdsoa|Uneégeylying Parallel
November, 2008.

Imagine a collective I/O access Offset in File -
using four aggregators to a file LT T /O [[[NN [[[DOy [[[
striped over four file servers A A |
(indicated by colors): Stripe Unit Lock Extent of Accesses

Boundary
One approach is to evenly . Aggregator | | Aggregator2 ! Aggregator3 | Aggregator4
divide the region accessed C LT T D (T 1 | D [[[DO | 1 |

across aggregators. T T

Aligning regions with lock —> —>

__

boundaries eliminates lock : ; i] :
contention. “ . Aggregator | Aggregator2 | Aggregator3 ; Aggregator4 |
| Todayods syst
Ma::lpping ahggregat;:rs t? servers choose aggregators
reduces the nhumber o ~
concurrent operations on a t hat ar e b
single server and can be helpful LAl | A A T A TTTA T A T AY A storage
when locks are handed out on ' ‘ : ' : ' ' I

a per-server basis (e.g., Lustre).

. . . . ST, s. 3 /";\
materials: https://github.com/radix-io/hands-on N EﬁPAERTMREEFY (S)ff'ce of _\(\ \\) — =
R 4 cience PROJECT

https://github.com/radix-io/hands-on

Time (s)

Two-phase I/O in Practice

A Consistent performance independent of access pattern
A Initial performance might underwhelm you
A Lots of tuning knobs: getting lock contention right is subtle
AAThrow Machine Learning at ito stildl
Aé But folks |Iike me arendt | osing job
A After tuning (two hints), performs so well | had to re-scale the y axis

Noncontiguious Writes with I0R _ NEUYE Data Slevmg Two- phase

a good i1 deac¢e
S anytime soa

100

I ‘EDT%ESD“‘“ — / | / MPI-IO writes

go| e oRese MPI-IO Reads 0 0 0

Posix Writes 192000 192000 1832
7 | Posix Reads 0 192015 0
40 | MPI-IO bytes written 1920000000 1920000000 1920000000
ol MPI-10 bytes read 0 0 0

Posix bytes read 0 100039006128 0
°1 10 100 1%ed 10000 POSIX bytes written 1920000000 100564552704 1920000000

Pieces

A B>, U-S- DEPARTMENT OF Office of

\
JENERGY scence (TP 555

materials: https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

36

HANDS-ON 6: reading with MPI-IO

4
A Slightly different: all processes read one column
I For simplicity, same row T
AFile view will be more compl | 1 S
datatype S
o
Aln C, array accessgnaijjordescr i 0
I array_size [0]=5; array_size [1] =4, L
AFile view uses deri-mBR INIsSuba ayuo, Tmmot
ALocation in file given with subarray type; no offset in
MPI_File read_all
i St provide a Abuffer, count, datatypeo tu
materials: https://github.com/radix-io/hands-on EﬁPETMRE&OFY gifiigsczf — \(/;\\\) i

https://github.com/radix-io/hands-on

37

Solution fragments

Type creation File view and read

/*InC - order the arrays are row - major: MPI_CHECKMPI_File_set view (th, sizeof (header),

x MPI_INT, subarray, , Info));

----- I MPI_Type free (&subarray);

----- | MPI_CHECKMPI_File_read_all (th,

----- | read_buf , nprocs , MPI_INT, MPI_STATUS_IGNORE);

* The 'sizes’ of the above array would be 3,5
* The last column would be a " subsize "of 3,1
* And a "start" of 0,5 */

sizes[0] = nprocs ; sizes[1] = XDIM;
sub[0] = nprocs ; sub[l]=1;
starts[0] = 0; starts[1] = XDIM/2;

MPI_Type_ create_subarray (NDIMS,
sizes, sub, starts,
MPI_ORDER_C, MPI_INT, &subarray);
MPI_Type _commit (&subarray);

—_—

SENT Op 8 . -—
S D, U.S. DEPARTMENT OF OffICe Of \\ EXASCALE

ENERGY Science _\()_) PRODECT

materials: https://github.com/radix-io/hands-on

PROJECT

https://github.com/radix-io/hands-on

Hands on 6 continued: Darshan

AHow does this workload differ from the write?

AChangereadfm® éd o an independent O6read?®d
I What do you think the Darshan output will say? Find out.

o

AR, U-S- DEPARTMENT OF Office of

W ENERGY science _\(\) — e

materials: https://github.com/radix-io/hands-on

38

https://github.com/radix-io/hands-on

GPFS Access three ways

A POSIX shared vs MPI-IO collective
I Locking overhead for unaligned writes hits POSIX hard

A Default MPI-10 parameters not ideal
I Reported to IBM; simple tuning brings MPI-10 back to parity
i A"Vendor Defaultso might give you bad first | mpressi

A File per process (fpp) extremely seductive, but entirely untenable on current generation.

GPFS approaches, IOR (contiguous),
unaligned I/O, 65536 Mira processes

14000

write m—
read D |

12000 +

10000 +

8000 -

6000 +

MiB/sec

4000 +

2000

POSIX shared POSIX fpp MPI-IO coll. MPI-IO tuned

approach

materials: https://github.com/radix-io/hands-on

<ET i —
AER, U.S. DEPARTMENT OF Office of \\ EXASCALE

ENERGY Science _\(_ | =

PROJECT

39

https://github.com/radix-io/hands-on

Performance portability in I/O:

ALet's look more closely at file-system
specific optmizations

A Simple ior benchmark on theta vs
ascent (baby summit)

Lust GPFS
I 1 000 000 bytes per process, 48 (Lustre)) ()

orocesses MPIIO_ACCESS1 ACCESS 1000 000 1 000 000
i Collective I/O forced on ascent POSIX_WRITES 46 3
. . . POSIX BYTES WRITTEN 48000000 48000000
identical MPI-I - -
ADarshan confirms identica O POSIX_SIZE WRITE 100K 1M 46 0
workload
POSIX_SIZE WRITE_10M_100M 0 3
AIZ_)lfferent tranformations for different posix FILE ALIGNMENT 1048576 -1(*)
file systems POSIX SLOWEST RANK BYTES 2097152 96000000

I OST-oriented vs file block

RSENT Op . ";.\
5\;\,1«'51,’; U.S. DEPARTMENT OF OffICe Of

\
ENERGY Science _\(\ \) — EQE_STEET'LNEE

materials: https://github.com/radix-io/hands-on

40

https://github.com/radix-io/hands-on

MPI-10 Takeaway

ASometimes it makes sense to build a custom library that uses MPI-10O (or maybe
even MPI + POSIX) to write a custom format

i e.qg., adata format for your domain already exists, need parallel API

AWebve only touched on the APl here
I There is support for data that is noncontiguous in file and memory
I There are independent calls that allow processes to operate without coordination

AlIn general we suggest using data model libraries
I They do more for you
I Performance can be competitive

o

LR, U-S. DEPARTMENT OF Office of

I 2, \
@ ENERGY sice E(C)P FE7S

materials: https://github.com/radix-io/hands-on

41

https://github.com/radix-io/hands-on

42

Additional Resources

AOn Cray sysintwmmpid0 fioman3, 000 | i
tuning parameters, debug configuration

AUsing Advanced MPI, Gropp, Hoeffler, Thakur, Lusk

I Chapter on MPI I/O routines covers entire APl as well as
consistency semantics

AMpidpy: Python bindings to MPI
I https://mpi4py.readthedocs.io/en/stable/index.html

SR>, U-S. DEPARTMENT OF Office of

EN ERGY Science

materials: https://github.com/radix-io/hands-on

nes of

o

\
EXASCAHLE
\) —) COMPUTING

PROJECT

https://github.com/radix-io/hands-on

